Conceptual model for small-volume alkali basalt petrogenesis: implications for volcanic hazards at the proposed Yucca Mountain nuclear waste repository

نویسندگان

  • F. J. Spera
  • S. J. Fowler
چکیده

Today, 31 countries operate ∼ 450 nuclear power reactors supplying electric power to ∼ 1 billion people,∼ 15% of the world population. Nuclear reactors generate∼ 17% of global electric power needs and a number of industrialized countries depend on nuclear power for at least half of their electricity. In addition, ∼ 30 nuclear power reactors are presently under construction worldwide (Macfarlane and Miller, 2007). A comprehensive summary of the principles, practices, and prospects for nuclear energy may be found in Bodansky (1996). Concerns regarding energy resource availability, climate change, air quality and energy security imply a continuing demand for nuclear power in the world energy budget (Craig et al., 2001). However, to date no country has solved the problem of long-term disposal or storage of nuclear waste. Without a long-term solution, the viability of nuclear energy as an increasingly significant contributor to power generation in the long-range future remains unclear. There is broad consensus that geologic disposal is the safest feasible longterm solution to high-level waste and spent-fuel disposal. Although a number of countries have ongoing geologic repository research programs, there is presently no operational geologic repository for spent fuel or high-level waste on Earth. In theUnited States, where spent nuclear fuel and high-level waste amounts to ∼ 50 000 metric tons, ∼ 15% of the world total, implementation has proven to be challenging both technically and politically. Nuclear waste is currently stored on-site at existing nuclear power stations and at several temporary storage facilities. Permanent geologic disposal, like the siting of a nuclear power plant, requires careful site selection. For geologic disposal, lithology that can isolate radioactive waste from the surrounding environment and biosphere at geologic timescales∼ 104−106 a are a minimum requirement (Macfarlane and Ewing, 2006). Of particular importance in this regard are the nature, consequences and probabilities of volcanic hazards that can potentially compromise public, environmental and biospheric safety at long-term nuclear waste storage sites. Yucca Mountain (YM) in Nevada, USA was identified in the early 1980s as a potential geologic repository for nuclear waste. Yucca Mountain is made up of silicic volcanic tuffsrocks composed chiefly of pyroclastic flow and fall deposits. The proposedYuccaMountain Repository (YMR) lies on the western boundary of the Nevada Test Site (NTS) within the Basin and Range geologic province (Zoback et al., 1981; Thompson and Burke, 1974). This region is geologically active,with transtensional deformationmanifested by faulting, related

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hazard area and probability of volcanic disruption of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

Models that calculate the probability that a new volcano or a dike from a nearby eruption will intersect the footprint of the proposed high-level nuclear waste repository are generalized based on a conceptual model developed for the space transportation industry. The proposed hazard area, defined such that every new eruption that occurs there will disrupt the repository, plays a fundamental rol...

متن کامل

Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

This paper summarizes various hazards identified between 1978 when Yucca Mountain, located in arid southern Nevada, was first proposed as a potential site and 2008 when the license application to construct a repository for spent nuclear fuel and high-level radioactive waste was submitted. Although advantages of an arid site are many, hazard identification and scenario development have generally...

متن کامل

YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste

■ Abstract The nation has over 40,000 metric tonnes (MT) of nuclear waste destined for disposal in a geologic repository at Yucca Mountain. In this review, we highlight some of the important geoscience issues associated with the project and place them in the context of the process by which a final decision on Yucca Mountain will be made. The issues include understanding how water could infiltra...

متن کامل

Nuclear Energy and Waste Program

radioactive waste is currently the preferred means of disposal for many countries worldwide. The role of ESD's Nuclear Waste Program (NWP) is to assist the U.S. Department of Energy, the United States, and other countries in achieving the safe disposal of high-level radioactive waste—by means of high-quality scientific analyses that encompass modeling, laboratory and field experiments, and tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009